NEWS & UPDATES >> BCA BCSP064 Synopsis & Project Work Started for DEC 2017, IGNOU MCA MCSP060 Synopsis Work Started for DEC 2017, CONTACT 4 IGNOU Mini Project

(MSCDFSM) Nutritional Biochemistry (TMA-2) ANSWER 2017

Q5. a) Work out the energy (ATP) production in glycolysis pathways: (Illustrate the cycle and work out the ATP production).

ANS- Endergonic reactions require energy input in order to proceed (see GIBB'S FREE ENERGY). Almost every time a cell performs an endergonic reaction, such as linking amino acids, synthesizing small molecules, or cellular movement, it derives the needed energy from the splitting of ATP. Aerobic organisms produce most of their ATP through respiration, a complex set of reactions that transfer electrons from glucose to oxygen. Glycolysis is the first step in glucose metabolism. The success of glycolysis lies in its ability to couple energy releasing reactions to the endergonic synethesis of ATP.
Importance: Because ATP is considered the universal currency of biological energy, it is important to learn how cells make ATP. Also, properties of cells and chemical reactions affect the efficiency of ATP production.

The energy for all physical activity comes from the conversion of high-energy phosphates (adenosine triphosphate—ATP) to lower-energy phosphates (adenosine diphosphate—ADP; adenosine monophos- phate—AMP; and inorganic phosphate, Pi). During this breakdown (hydrolysis) of ATP, which is a water-requiring process, a proton, energy and heat are produced: ATP + H2O —© ADP + Pi + H+ + energy + heat. Since our muscles don't store much ATP, we must constantly resynthesize it. The hydrolysis and resynthesis of ATP is thus a circular process—ATP is hydrolyzed into ADP and Pi, and then ADP and Pi combine to resynthesize ATP. Alternatively, two ADP molecules can combine to produce ATP and AMP: ADP + ADP —© ATP + AMP.

No comments:

Post a Comment